Publications
On Parseval equalities and boundedness properties for Kontorovich-Lebedev type operators. Novi Sad J. Math.. 1999;29:185-205.Edit
New summation and transformation formulas of the Poisson, Müntz, Möbius and Voronoi type. Integral Transforms Spec. Functions. 2015;26(10):768-795.
[2011-15] A convolution operator related to the generalized Mehler-Fock and Kontorovich-Lebedev transforms .Edit
$L_2$-interpretation of the Kontorovich-Lebedev integrals. Int. J. Pure Appl. Math.. 2008;42:99-110.
On the class of Lebedev-Skalskaya type index transforms. Fukuoka Univ. Sci. Rep.. 1994;24:67-81.Edit
Convolution operators related to the Fourier cosine and Kontorovich-Lebedev transformations. Results Math.. 2009;55:175-197.Edit
[2010-3] An index integral and convolution operator related to the Kontorovich-Lebedev and Mehler-Fock transf .
The Kontorovich-Lebedev transformation on Sobolev type spaces. Sarajevo J. Math.. 2005;1(14):211-234.
On the Kontorovich-Lebedev transformation. J. Integral Equations Appl.. 2003;15:95-112.
A new Kontorovich-Lebedev-like transformation. Commun. Math. Anal.. 2012;13:86-99.
Integral convolutions of Laplace type for $G$-transforms. Vests\=ı Akad. Navuk BSSR Ser. F\=ız.-Mat. Navuk. 1991:11-16, 123.
[2008-7] Convolution operators related to Fourier cosine and Kontorovich-Lebedev Transformations .Edit
New index transforms of the Lebedev–Skalskaya type. Integral Transforms and Special Functions. 2016;27(2):137-152.
A stochastic continuous cellular automata traffic flow model with a multi-agent fuzzy system. In: EWGT2012 - 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris. Vol Procedia - Social and Behavioral Sciences vol. 54.; 2012. p. pp. p. 1350-1359p. Edit
An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup. Matematicheskii Sbornik . 2013;204(2):73-86.
On the rank of the intersection of free subgroups in virtually free groups. Journal of Algebra. 2014;418:29-43.
[2010-4] Submanifolds in Poisson geometry: a survey .