Publications
A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
[2016-12] Global Saddles for Planar Maps .
Global dynamics for symmetric planar maps. Discrete Contin. Dyn. Syst.. 2013;33:2241-2251.
The discrete Markus-Yamabe problem for symmetric planar polynomial maps. Indag. Math. (N.S.). 2012;23:603-608.
Discrete Symmetric Planar Dynamics. Vol Dynamics, Games and Science. CIM Series in Mathematical Sciences ed. Springer-Verlag 2015.
Global saddles for planar maps. Journal of Dynamics and Differential Equations. In Press.
Delivery of pharmaceutics to bone: nanotechnologies, high-throughput processing and in silico mathematical models. EUROPEAN CELLS & MATERIALS. 2016;30:355-381.Edit
A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Mathematical Methods in the Applied Sciences. 2016;39(13):3640-3649.Edit
Hunter’s Lemma for Forest Algebras. In: The International Conference on 46th Annual Iranian Mathematics. Iran, Yazd. 1. p. 1307-1310p. Edit
On Pseudovarieties of Forest Algebras. International Journal of Foundations of Computer Science.Edit
A classification of aperiodic power monoids. J. Algebra. 1994;170:355-387.Edit
[2017-9] Towards a pseudoequational proof theory .Edit
Tameness of some locally trivial pseudovarieties. Comm. Algebra. 2003;31:61-77.Edit
On direct product decompositions of finite $\scr J$-trivial semigroups. Internat. J. Algebra Comput.. 1991;1:329-337.Edit
A counterexample to a conjecture concerning concatenation hierarchies. Inform. Process. Lett.. 2009;110:4-7.Edit
Tameness of the pseudovariety of abelian groups. Internat. J. Algebra Comput.. 2005;15:327-338.Edit
Arfima-Garch Modeling of Hrv: Clinical Application in Acute Brain Injury Springer International Publishing 2017.Edit
Hyperdecidability of pseudovarieties of orthogroups. Glasg. Math. J.. 2001;43:67-83.Edit
The ω-inequality problem for concatenation hierarchies of star-free languages. Forum Mathematicum. 2018;30:663-679.Edit
A geometric interpretation of the Schützenberger group of a minimal subshift. Arkiv för Matematik. 2016;54(2):243-275.Edit