Publications

Found 2268 results
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Almeida J. On pseudovarieties of monoids. In: Semigroups, theory and applications (Oberwolfach, 1986). Vol 1320. Springer, Berlin; 1988. 1. p. 11-17p. (Lecture Notes in Math.; vol 1320).Edit
Almeida J, Margolis SW, Volkov M. The pseudovariety of semigroups of triangular matrices over a finite field. Theor. Inform. Appl.. 2005;39:31-48.Edit
[2012-3] Almeida J, Costa JC, Zeitoun M. McCammond's normal forms for free aperiodic semigroups revisited .Edit
Almeida J, Weil P. Free profinite $\scr R$-trivial monoids. Internat. J. Algebra Comput.. 1997;7:625-671.Edit
[2009-14] Almeida J, Costa JC, Zeitoun M. Some structural properties of the free profinite aperiodic semigroup .Edit
Alirezazadeh S. Hunter’s Lemma for Forest Algebras. In: The International Conference on 46th Annual Iranian Mathematics. Iran, Yazd. 1. p. 1307-1310p. Edit
Alirezazadeh S. On Pseudovarieties of Forest Algebras. International Journal of Foundations of Computer Science.Edit
Ali H., Pereira F., Gama SM. A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Mathematical Methods in the Applied Sciences. 2016;39(13):3640-3649.Edit
Alencastre IS, Sousa DM, Alves CJ, Leitao L, Neto E, Aguiar P, et al. Delivery of pharmaceutics to bone: nanotechnologies, high-throughput processing and in silico mathematical models. EUROPEAN CELLS & MATERIALS. 2016;30:355-381.Edit
[2012-12] Alarcón B, Castro SB, Labouriau IS. Global Dynamics for Symmetric Planar Maps .
Alarcón B, Castro SB, Labouriau IS. The discrete Markus-Yamabe problem for symmetric planar polynomial maps. Indag. Math. (N.S.). 2012;23:603-608.
[2012-23] Alarcón B. Rotation numbers for planar attractors of equivariant homeomorphisms .
[2011-23] Alarcón B, Castro SB, Labouriau IS. The Discrete Markus-Yamabe Problem for Symmetric Planar Polynomial Maps .
Alarcón B, Castro SB, Labouriau IS. Discrete Symmetric Planar Dynamics. Vol Dynamics, Games and Science. CIM Series in Mathematical Sciences ed. Springer-Verlag 2015.
Alarcón B, Castro SB, Labouriau IS. A local but not global attractor for a $\Bbb Z_n$-symmetric map. J. Singul.. 2012;6:1-14.
Alarcón B, Castro SB, Labouriau IS. Global dynamics for symmetric planar maps. Discrete Contin. Dyn. Syst.. 2013;33:2241-2251.
Alarcón B, Castro SB, Labouriau IS. A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
[2016-12] Alarcón B, Castro SB, Labouriau IS. Global Saddles for Planar Maps .
[2011-33] Alarcón B, Castro SB, Labouriau IS. A $\Z_n$-symmetric local but not global attractor .
Alarcón B, Castro SB, Labouriau IS. Global saddles for planar maps. Journal of Dynamics and Differential Equations. In Press.
[2006-4] Al-Takhman K, Lomp C, Wisbauer R. T-complemented and T-supplemented modules .Edit
Al-Takhman K, Lomp C, Wisbauer R. τ-complemented and τ-supplemented modules. Algebra Discrete Math.. 2006:1-16.Edit
Aires S., d'Almeida FD. Application of eigensolvers in quadratic eigenvalue problems for brake systems analysis. Vol 8584 LNCS Portugal, Guimaraes: Springer International Publishing 2014.
Aimino R, Rousseau J. Concentration inequalities for sequential dynamical systems of the unit interval. Ergodic Theory Dynam. Systems. 2016;36:2384-2407.Edit
Aimino R, Nicol M, Vaienti S. Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Related Fields. 2015;162:233-274.Edit

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.