Publications
Found 32 results
[ Author] Title Type Year Filters: Author is Labouriau, Isabel Salgado [Clear All Filters]
Stability of equilibria in equations of Hodgkin-Huxley type. In: Real and complex singularities. Vol 354. Amer. Math. Soc., Providence, RI; 2004. 1. p. 137-143p. (Contemp. Math.; vol 354).Edit
[2015-23] Limit cycles for a class of $\mathbb{Z}_{2n}-$equivariant systems without infinite equilibria .Edit
[2004-28] Symmetries of projected wallpaper patterns .Edit
Loss of synchronization in partially coupled Hodgkin-Huxley equations. Bull. Math. Biol.. 2004;66:539-557.Edit
Degenerate Hopf bifurcation and nerve impulse. II. SIAM J. Math. Anal.. 1989;20:1-12.
On Takens Last Problem: tangencies and time averages near heteroclinic networks. Nonlinearity . 2017;30(5):1876-1910.Edit
Invariants for bifurcations. Houston J. Math.. 2006;32:445-458.Edit
[2015-10] Global bifurcations close to symmetry .Edit
[2004-27] Invariants for bifurcations .Edit
The geometry of Hopf and saddle-node bifurcations for waves of Hodgkin-Huxley type. In: Real and complex singularities. Vol 380. Cambridge Univ. Press, Cambridge; 2010. 2. p. 229-245p. Edit
Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148.Edit
On Takens' Last Problem: tangencies and time averages near heteroclinic networks. Nonlinearity. 2017;30:1876-1910.Edit
[2012-11] Global Generic Dynamics Close to Symmetry .Edit
Symmetries of projected wallpaper patterns. Math. Proc. Cambridge Philos. Soc.. 2006;141:421-441.Edit
Instant chaos is chaos in slow motionLabouriau IS, Dias AP. Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148. J. Math. Anal. Appl.. 1996;199:138-148.Edit
Periodic solutions in an array of coupled FitzHugh-Nagumo cells. J. Math. Anal. Appl.. 2014;412:29-40.Edit
Global generic dynamics close to symmetry. J. Differential Equations. 2012;253:2527-2557.Edit
Singularities of equations of Hodgkin-Huxley type. Dynam. Stability Systems. 1996;11:91-108.Edit
Dense heteroclinic tangencies near a Bykov cycle. Journal of Differential Equations. 2015; 259(11):5875-5902.
Projected wallpaper patterns. In: Real and complex singularities. Birkhäuser, Basel; 2007. 2. p. 209-217p. (Trends Math.).Edit
Note on the unfolding of degenerate Hopf bifurcation germs. J. Differential Equations. 1985;57:436-439.
Limit cycles for a class of Z_2n-equivariant systems without infinite equilibria. Electronic Journal of Differential Equations. 2016;122:1-12.Edit